

SEKISUI MEDICAL CO., LTD.

International Business Department Diagnostics Division

1-3, Nihonbashi 2-chome, Chuo-ku, Tokyo 103-0027 JAPAN Tel: +81-3-3272-0828, Fax: +81-3-3272-0907 E-mail: international@sekisui.com Web: www.sekisuimedical.jp/english

SEKISUI MEDICAL CO., LTD.

NORUDIA [™] N HbA1c ······ P3
Pureauto TM S GLU-R P5
NORUDIA [™] Insulin P7
NORUDIA TM U-ALB P9
NORUDIA [™] Cystatin C P11
NORUDIA [™] L-FABP

TM I

NORUDIA[™] N HbA1c Pureauto[™] S GLU-R NORUDIA[™] Insulin NORUDIA[™] U-ALB NORUDIA[™] Cystatin C

NORUDIATM L-FABP

CONTENTS

Sekisui Medical offers a wide range of diabetes related products, from the diagnosis stage to monitoring complications. These products can be applied to various automated analyzers and will contribute to the efficiency of clinical laboratory tests.

1

Diagnosis	Pathological State /Follow-Up	Complication Monitoring
M	₫	
.▲	.∡	
		1
		1
		4

For measurement of Hemoglobin A1c (HbA1c) in whole blood

NORUDIA[™] N HbA1c

Features

- 1. Specifically measures glycated dipeptides bound to the N-terminal of the hemoglobin β chain.
- 2. Applicability to a variety of autoanalyzers allows measurement of a large number of samples.
- 3. Does not stain reaction cells.
- 4. High reagent stability without calibration.
- 5. Is not influenced by modified hemoglobin and unstable hemoglobin A1c

2. Components

Reagent Kit		Sold Separately	
HbA1c Reagent 1	30mL×2	HbA1c Calibrator	1mL × 2conc.× 3
HbA1c Reagent 2	10mL×2	HbA1c Control	1mL × 2conc.× 6
		HbA1c Pretreatment	200mL×2

3. Assay principle (enzymatic method)

Pretreatment

Red blood cells obtained by centrifugation of the whole blood are hemolyzed. Then hemoglobin is oxidized to methemoglobin.

HbA1c blank Solution

5mL×1

First reaction Imeasurement of Hb)

Glycated dipeptides bound to the N-terminal of the hemoglobin β chain are cleaved by a protease. Then methemoglobin is converted to methemoglobin azide by the action of sodium azide, and the absorbance of methemoglobin azide is measured to determine the hemoglobin concentration.

Second reaction (measurement of HbA1c)

Glycated dipeptides are reacted with fructosyl peptide oxidase (FPOX) to produce hydrogen peroxide, which develops color with a color coupler in the presence of peroxidase (POD). Then the absorbance of the colored reaction solution is measured to determine the concentration of HbA1c.

Measurement range (Hitachi 917) 4. Reference data HbA1c (NGSP): 3.3%–16.6% Hemoglobin concentration: 90–310 μmol/L

	Certified value and expanded	Value obtained
	uncertainty (NGSP, %)	Norudia™ N HbA1c
Level 1	5.10 ± 0.13	5.05
Level 2	5.77 ± 0.14	5.68
Level 3	7.39 ± 0.19	7.30
Level 4	9.60 ± 0.23	9.49
Level 5	11.98 ± 0.28	11.99

*Analyzer: Hitachi 7180 (HbA1c measurement option)

Correlation to definitive method (K0500 method)

■ Variation of blank cell values

Value of the blank cell was determined by measuring the cell 25 times (comparison between pre- and post-measurement values). Similar variation between Norudia[™] N HbA1c and physiological saline at all wavelengths, and there were no stains to the cell was seen with the reagents * Analyzer: Hitachi 7170S

Correlation to HPLC method

* Analyzer: Hitachi 7170S

HPLC method (separates unstable HbA1c) (%) * Analyzer: BM9130

5. Traceability

■ Measured values of the reference standard (JCCRM411-3 [JDS lot.5])

(NGSP, %)

■Calculation of HbA1c (%)

A formula using different parameters obtained by an autoanalyzer is required for conversion to HbA1c (NGSP, %).

Pormula
91.5
$$\times \frac{\text{HbA1c}(\mu \text{mol}/\text{L})}{\text{Hb}(\mu \text{mol}/\text{L})} + 2.15$$

Reference: Wieland Hoelzel, Cas Weykamp, et al.: Clin. Chem, 50:166-174, 2004

Calibration was performed at 2 points*

* Calibration was performed at 3 points with

some models. * Analyzer: Hitachi 7180 (HbA1c measurement option)

Method	Operator	
IFCC method	ReCCS	
Manufacturer's standing		
measurement procedure	Sekisui Medical Co., Ltd.	
Manufacturer's standing		
measurement procedure	Sekisui Medical Co., Ltd.	
Routine method	End-user	
	End-user	

For measurement of Glucose in blood serum, plasma, or urine

Pureauto[™]S GLU-R

Features

- 1. Wide measurement range allows measurement of undiluted urine samples.
- 2. Rate assay method allows little influence of interfering substances.
- 3. High sensitivity and high reproducibility.

2. Components

Reagent Kit	
GLU-R Enzyme Solution 1	400mL×2
GLU-R Enzyme Solution2	200mL×2

Sold Separately		
Anaserum™	GLU Standard Solution	

5mL×6

3. Assay principle (hexokinase method)

Glucose is phosphorylated by hexokinase (HK) to form glucose-6-phosphate in the presence of ATP. Glucose-6-phosphate is oxidized by glucose-6-phosphate dehydrogenase (G-6-PDH) to form 6-phosphogluconate. During this process, NAD is converted to NADH and the absorbance at 340 nm increases. The glucose concentration is determined by measuring the change of absorbance.

* ATP: Adenosine triphosphate * ADP: Adenosine diphosphate

* NAD: Nicotinamide adenine dinucleotide (oxidized form) * NADH: Nicotinamide adenine dinucleotide (reduced form)

4. Reference data (analyzer: Hitachi 717)

Reproducibility (mg/dL)				
	Sample1	Sample2	Sample3	
n	20	20	20	
Mean	93.7	240.2	139.7	
S.D.	0.49	1.01	0.80	
C.V. (%)	0.52	0.42	0.57	
Max.	94	242	142	
Min.	93	238	139	
Range	1	4	3	

Linearity (serum parameter)

5. Traceability

patients, if a hypoglycemic agent like insulin is administered in response to a falsely elevated blood glucose level, serious hypoglycemia with symptoms such as coma may occur.)

Measurement range (Hitachi 717): 3-8000 mg/dL * urine parameter

ntonfononoo

■Interference (mg/dl				
		Measured value		
	Concentration	Base serum	Serum containing the substance	
Free bilirubin	20 mg/dL	127	129	
Conjugated bilirubin	20 mg/dL	127	130	
Hemoglobin	500 mg/dL	128	128	
Chyle	3000 formazin turbidity units	128	129	
Ascorbic acid	50 mg/dL	129	130	
Rheumatoid factor	500 IU/mL	137	136	

Linearity (urine parameter)

For measurement of Insulin in blood serum or plasma

NORUDIA[™] Insulin

1. Features

- 1. An excellent marker to identify the cause, pathologic state, and monitor treatment of patients diagnosed with diabetes and impaired glucose tolerance.
- 2. Simultaneous measurement of blood glucose and insulin can be obatined from a single blood test.(NaF tube)
- 3. Excellent on-board stability.

2. Components

Reagent Kit		Sold Separately	
Insulin Buffer Solution 1	15mL×2	Insulin Calibrator	1mL × 6conc.
Insulin Latex Reagent 2	5mL×2	Insulin Control	1mL × 2conc.×3

3. Assay principle (latex agglutination turbidimetry)

Insulin in samples causes agglutination of latex particles coated with mouse anti-human insulin monoclonal antibody via an antigen-antibody reaction. The change of absorbance due to this agglutination process is measured to determine the insulin level.

4. Reference data (analyzer: Hitachi 7180) Measurement range (Hitachi 7180): 1-150 µU/mL

■ Reproducibility (µU/mL)				
	Sample1	Sample2	Sample3	
	10	10	10	
Mean	6.8	20.4	120.0	
S.D.	0.07	0.09	1.42	
C.V. (%)	0.99	0.47	1.18	
Max.	6.9	20.5	122.2	
Min.	6.7	20.2	118.0	
Range	0.2	0.3	4.2	

Detection limit (±2.6S.D.)

5. Traceability

■ Interference			$(\mu U/mL)$
		Measured value	
	Concentration	Base serum	Serum containing the substance
Free bilirubin	20 mg/dL	12.7	12.9
Conjugated bilirubin	20 mg/dL	12.7	12.7
Chyle	2000 formazin turbidity units	12.6	13.3
Intralipos	5%	12.2	12.0
Rheumatoid factor	500 IU/mL	16.8	18.6
Gastrin	10 μ g/mL	14.2	14.2
Glucagon	10 μ g/mL	14.2	13.9
Secretin	10 μ g/mL	14.2	13.4
Proinsulin	12.2 ng/mL	0.0	0.0
C-peptide	3.9 ng/mL	0.0	0.0

On-board stability (stored in analyzer)

Method	Operator
Biological method, HPLC method	WHO
Manufacturer's standing measurement procedure	Sekisui Medical Co., Ltd.
Manufacturer's standing measurement procedure	Sekisui Medical Co., Ltd.
Manufacturer's standing measurement procedure	Sekisui Medical Co., Ltd.
Routine method	
	End-user

For measurement of urinary microalbumin concentration

NORUDIA[™] U-ALB

1. Features

- 1. No hook effect in the high concentration range due to use of the competitive method.
- 2. Highly sensitive measurement of urinary microalbumin.

2. Components

10mL×1
10mL×1

Sold Separately		
U-ALB Calibrator	Level A	2mL × 5conc.
	Level B	2mL × 6conc.
U-ALB Control		2mL × 2conc.× 3

3. Assay principle (latex agglutination turbidimetry [competitive method])

When a certain amount of mouse anti-human albumin monoclonal antibody (albumin antibody) is added to a sample, the albumin antibody binds to albumin in the sample until it has reacted with all of the available albumin. Then human albumin-coated latex particles are added, which react with the residual albumin antibody, leading to agglutination. The concentration of albumin in the sample can be determined by measuring the change of absorbance due to this agglutination process.

4. Reference data (analyzer: Hitachi 917)

■ Reproducibility (µg/mL				
	Sample1	Sample2	Sample3	
n	10	10	10	
Mean	10.91	29.25	98.92	
S.D.	0.21	0.36	1.70	
C.V. (%)	1.9	1.2	1.7	
Max.	11.2	29.6	102.3	
Min.	10.5	28.5	96.4	
Range	0.7	1.1	5.9	

Detection limit (±2.6S.D.)

5. Traceability

Measurement range (Hitachi 917): 5–500 µg/mL

Interferene

 $(\mu g/mL)$

		Measured value		
	Concentration	Base sample	Sample containing the substance	
Free bilirubin	10 mg/dL	38.0	35.6	
Conjugated bilirubin	10 mg/dL	38.0	36.9	
Chyle	2000 formazin turbidity units	37.4	38.5	
Ascorbic acid	500 mg/dL	82.2	78.5	
Hemoglobin	500 mg/dL	82.5	85.1	
Glucose	4000 mg/dL	82.6	82.1	
Urea	400 mg/dL	80.1	80.8	
Chloroform	1.0 mL/dL	83.8	83.9	
Formalin	1.0 mL/dL	83.3	82.7	
NaCl	2000 mg/dL	43.5	44.4	
KCl	1000 mg/dL	43.1	43.7	

■Prozone

Method	Operator
Nephelometry	IFCC
Manufacturer's standing measurement procedure	Sekisui Medical Co., Ltd.
Manufacturer's standing measurement procedure	Sekisui Medical Co., Ltd.
Manufacturer's standing measurement procedure	Sekisui Medical Co., Ltd.
Routine method	
	End-user

For measurement of Cystatin C in blood serum or plasma

NORUDIA[™] Cystatin C

1. Features

- 1. Highly specific method using monoclonal antibody.
- 2. Highly specificity with little effect from RF and other substances.
- 3. Wide measurement range (0.1–10 mg/L).
- 4. Excellent on-board stability.
- 5. Complies with IFCC certified reference material(ERM-DA471)

2. Components

Reagent Kit		Sold Separately	
Cystatin C Buffer Solution 1	12mL×2	Cystatin C Calibrator N	2mL × 5conc.
Cystatin C Latex Reagent 2	12mL×2	Cystatin C Control N	2mL × 2conc.× 3

3. Assay principle (latex agglutination turbidimetry)

Cystatin C in samples causes agglutination of latex particles coated with mouse anti-human cystatin C monoclonal antibody via an antigen-antibody reaction. The change of absorbance due to this agglutination process is measured to determine the cystatin C level.

4. Reference data (analyzer: Hitachi 7180)

Reproducibility (mg/l			
	Sample 1	Sample 2	Sample 3
n	20	20	20
Mean	0.469	1.945	6.142
S.D.	0.01	0.03	0.10
C.V. (%)	1.68	1.65	1.70
Max.	0.48	1.99	6.33
Min.	0.46	1.88	5.96
Range	0.02	0.11	0.37

5. Traceability

■Interferene (mg/L)				
		Measured value		
	Concentration	Base serum	Serum containing the substance	
Free bilirubin	20 mg/dL	1.22	1.20	
Conjugated bilirubin	20 mg/dL	1.20	1.22	
Hemoglobin	500 mg/dL	1.20	1.20	
Chyle	3000 formazin turbidity units	1.20	1.22	
Ascorbic acid	50 mg/dL	1.20	1.21	
Rheumatoid factor	500 IU/mL	1.33	1.34	

Measurement range (Hitachi 7180): 0.1–10 mg/L

On-board stability (stored in analyzer)

Method	Operator
Nephelometry	
	IRMM
Manufacturer's standing measurement procedure	
	Sekisui Medical Co., Ltd.
Manufacturer's standing measurement procedure	
ineasurement procedure	Sekisui Medical Co., Ltd.
Manufacturer's standing measurement procedure	
	Sekisui Medical Co., Ltd.
Routine method	
	End-user

For measurement of Liver – type Fatty Acid Binding Protein (L-FABP) in urine

NORUDIA[™] L-FABP

1. Significance

- 1. Urinary L-FABP increases when the proximal tubules of the kidneys are under stress (due to ischemia or oxidative substances) and its excretion in the urine increases. Therefore, it is a new biomarker reflecting the severity of stress on the tubules before progression of tissue damage.
- 2. The urinary L-FABP level is considered to reflect the severity of renal tubular dysfunction, and is considered useful for evaluation of peritubular microcirculatory disturbance (ischemia), staging of diabetic nephropathy, evaluation of the response to treatment, assessment of the risk of severe acute kidney injury (AKI), and prediction of contrast nephropathy.

1mL × 5conc.

1mL × 2conc.× 3

2. Components

Reagent Kit		Sold Separately
L-FABP Buffer Solution 1	18mL×1	L-FABP Calibrator
L-FABP Latex Reagent 2	7mL×1	L-FABP Control

3. Assay principle	(latex agglutination turbidimetry)
--------------------	------------------------------------

L-FABP in samples causes agglutination of latex beads coated with mouse anti-human L-FABP monoclonal antibody via an antigen-antibody reaction. The change of absorbance due to this agglutination process is measured to determine the L-FABP level.

4. Reference Data (analyzer: Hitachi 7180)

■Reproducibility (ng/mL					
	Sample 1	Sample 2	Sample 3		
n	10	10	10		
Mean	10.2	50.3	101.9		
S.D.	0.28	0.50	1.47		
C.V. (%)	2.75	0.99	1.44		
Max.	10.5	51.3	104.0		
Min.	9.7	49.7	98.9		
Range	0.8	1.6	5.1		

6. Traceability

Measurement range (Hitachi 7180): 1.5 – 200 ng/mL

■Interference

(ng/mL)

		Measured value	
	Concentration	Base sample	Sample containing the substance
Free bilirubin	20	10.2	10.1
	20 mg/dL	38.7	40.0
Conjugated bilirubin	20 mg/dL	10.0	9.6
		38.2	40.5
Hemoglobin	500 mg/dL	7.3	7.5
		39.4	40.4
Chyle	2000 formazin	8.0	7.5
	turbidity units	40.1	38.9
Glucose	4000 mg/dL	6.7	6.3
		37.3	37.4
Ascorbic acid*	300 mg/dL	8.1	7.2
	100 mg/dL	47.8	53.2

In some samples, measured values may be affected by ascorbic acid at concentrations of about 100 mg/dL or more.

■Correlation

⊃rocedure

Protein assay

Manufacturer's standing measurement procedure Routine measurement procedure

Operato

CMIC Holdings Co., Ltd. CMIC Holdings Co., Ltd. CMIC Holdings Co., Ltd. Sekisui Medical Co., Ltd. Sekisui Medical Co., Ltd. Sekisui Medical Co., Ltd.